Monatshefte für Chemie 110, 593-600 (1979)

Monatshefte für Chemie © by Springer-Verlag 1979

Untersuchung von Eisen(II)phosphiten im Hinblick auf die Ausbildung von Wasserstoffbindungen

Miroslav Ebert* und Ladislav Kavan

Institut für Anorganische Chemie, Karls-Universität, Prag, ČSSR

(Eingegangen 14. April 1978. Angenommen 11. Oktober 1978)

Study on Ferrous Phosphites From the Point of View of Hydrogen Bonding

Ferrous phosphites FeHPO₃ $\cdot 3$ H₂O, FeH₂P₂O₅, FeH₄P₂O₆ $\cdot 1/2$ H₂O and FeH₁₀P₄O₁₂ $\cdot 4$ H₂O were studied using X-ray powder patterns, thermography, electron reflectance spectroscopy, magnetic susceptibility measurements and *Raman* and infrared molecular spectra. The results obtained indicate that all the phosphites studied contain an approximately octahedral coordination sphere consisting of oxygen atoms, which produces a weak crystal field around the iron atom. Phosphite FeHPO₃ $\cdot 3$ H₂O contains an HPO₃²⁻ anion with the symmetry decreased from point group C_{3v} to C_s . Ferrous diphosphite FeH₂P₂O₅ contains a non-linear P—O—P bond with a valence angle of 159°. The hydrogen bonds between the water molecule and the HPO₃²⁻ anion indicate a positive hydratation of the phosphite anion. Medium-strong or strong hydrogen bonds, 258–270 pm long, correspond to mutual interactions of the anions in the crystal lattice of hydrogenphosphites. Hydrogen bonding in hydrogenphosphites causes a decrease in the *Dq* values.

(Keywords: Ferrous phosphites, coordination sphere; Hydrogen bonding; Raman spectroscopy; IR spectroscopy; Magnetic susceptibility)

Einleitung

Beim Studium der Löslichkeit im ternären heterogenen System FeHPO₃—H₃PO₃—H₂O wurde die Bildung folgender Phosphite beobachtet: FeHPO₃·3 H₂O, FeH₄P₂O₆·1/2 H₂O und FeH₁₀P₄O₁₂·4 H₂O¹. In der vorgelegten Arbeit wird die Pulver-Röntgenographie, Thermographie, magnetische Suszeptibilität, Elektronen-Reflexspektroskopie und Molekülspektroskopie dieser Verbindungen studiert; sie bildet eine Fortsetzung der früheren Studie der EPR und *Mössbauer*spektren von Eisenphosphiten² und der Studie über physikalisch-chemische Eigenschaften der Eisen(III)-³ und Mangan(II)phosphite⁴.

Die Erklärung der Bindungsverhältnisse in den Eisen(II)phosphiten war Ziel unserer Arbeit. Vor allem haben wir die Wasserstoffbindung studiert, weil diese zu den bedeutenden Bauprinzipien in den Kristallgittern von Phosphiten gehört²⁻⁵.

Ergebnisse und Diskussion

Pulverröntgenographie

Die Pulverröntgenogramme bestätigen, daß die gewonnenen Phosphite chemische Individuen darstellen. Die Werte der Netzebenabstände und Intensitäten der Diffraktionslinien werden auf Anforderung zur Verfügung gestellt.

Thermographie

Die laufende Dehydratation von FeHPO₃ $\cdot 3 H_2O$ erinnert an den Dehydratationsverlauf von Fe₂(HPO₃)₃ $\cdot 9 H_2O^3$. Bei der Temperatur der Oxidations-Reduktionszersetzung (445 K) entspricht die Zusammensetzung der Probe etwa dem Monohydrat. Die Gewichtsabnahme während der Dehydratation von sauren Phosphiten beweist die Freisetzung des Konstitutionswassers und die Kondensation von Hydrogenphosphit-anionen. Die Oxidations-Reduktionszersetzung beginnt bei dem Phosphit FeH₄P₂O₆ $\cdot 1/2H_2O$ bei 575 K und bei dem Phosphit FeH₁₀P₄O₁₂ $\cdot 4 H_2O$ bei 485 K. Das Eisen(II)diphosphit FeH₂P₂O₅ wurde durch thermische Zersetzung von FeH₄P₂O₆ $\cdot 1/2 H_2O$ bei dreistündiger Erhitzung auf die Temperatur von 573 K in der Atmosphäre von trockenem Stickstoff gewonnen.

Messung der magnetischen Suszeptibilitäten und der Elektronen-Reflexspektren

In der Tab. 1 sind magnetische Suszeptibilitäten, magnetische Momente und die Werte 10 Dq von Eisen(II)phosphiten angegeben. Die gefundenen Werte bezeugen, in guter Übereinstimmung mit den Ergebnissen der *Mössbauer*-Spektren², die Anwesenheit von Fe²⁺ mit hohem Spin. Der Nichtnullwert der magnetischen Orbital-Momente des Zustandes ${}^{5}T_{2g}$ wird durch die Einflüsse der Koordinationssphäre, der Spinorbitalinteraktion und der Elektronendelokalisierung wesentlich gedämpft.

Durch das Studium der Temperaturabhängigkeit der magnetischen Suszeptibilität des FeHPO₃·3H₂O (Tab. 1) wurde die Tatsache bestätigt, daß im Bereich von 77-298K keine antiferromagnetische Wechselwirkung zum Vorschein kommt, ebenso, wie es bei anderen Phosphiten der Übergangsmetalle^{3,4,6} der Fall ist. Das Phosphit FeHPO₃·3H₂O erfüllt das *Curie*-Gesetz (die *Weiss*-Konstante $\Theta = 0$).

Die Elektronen-Reflexspektren enthalten nur eine Absorptionsbande (${}^{5}E_{\rm g} \leftarrow {}^{5}T_{2\rm g}$), deren Wellenzahl in $\mu {\rm m}^{-1}$ numerisch dem Wert des *Jørgensen*-Parameters f_L gleich ist, weil $g_{\rm Fe}^{2+} = 1,00^7$ ist. Die Wellenzahl dieser Bande ist bei allen Phosphiten auch den Wert 10 Dq gleich, die man in der Tab. 1 findet.

	$T(\mathbf{K})$	$\chi_{\dot{M}}(\mathrm{mm^{3}mol^{-1}})$	$\mu_{ef}(\mu_B)$	$Dq (\mathrm{mm}^{-1})$
FAHPO Y H O	77	558	5.23	
reni 03 31120	196	213	5,15	
	273	156	5,21	
	298	140	5,15	97
FeH ₂ P ₂ O ₅	298	147	5,28	93
$\mathrm{FeH}_{4}\mathrm{P}_{2}\mathrm{O}_{6}\cdot 1/2\mathrm{H}_{2}\mathrm{O}$	298	139	5,13	94
$FeH_{10}P_4O_{12} \cdot 4H_2O$	298	143	5,21	88

Tabelle 1. Werte der magnetischen Suszeptibilität χ_M , der magnetischen Momente μ_{ef} und der Dq-Werte der Fe(II)-phosphite

Die bathochrome Verschiebung bei sauren Eisen(II)phosphiten im Vergleich mit FeHPO₃ \cdot 3 H₂O entspricht dem analogen Verhalten von Chrom(II)-⁸, Cobalt(II)-⁶ und Nickel(II)-phosphiten⁶. Der niedrigste Wert 10 Dq beim Diphosphit FeH₂P₂O₅ hängt wahrscheinlich mit der tetragonalen Verzerrung der Koordinationssphäre und mit dem Vorkommen von zwei strukturell nichtäquivalenten Stellungen für die Eisen(II)-kationen zusammen, die mit Hilfe der *Mössbauer*-Spektroskopie nachgewiesen wurden².

Molekülspektren

Die Infrarot-Molekülspektren der studierten Verbindungen und ihrer vollkommen deuterierten Analoga sind in der Tab. 2 angegeben. Ein reproduzierbares *Raman*-Spektrum ist nur beim Phosphit $FeH_4P_2O_6 \cdot 1/2 H_2O$ (Tab. 3) gelungen. Die übrigen Phosphite werden durch Bestrahlung mit dem Laserstrahl irreversibel zersetzt.

Die Molekülspektren sind nur in Näherung der Punktgruppe diskutierbar, weil keine Raumgruppe der studierten Phosphite bekannt ist. Der Deformierung des Anions bei FeHPO₃ · 3 H₂O ($C_{3v} \rightarrow C_s$) entsprechen in dieser Näherung⁹ die Werte der Kraftkonstanten

FeHPO ₃ · 3 H ₂ O	$\rm FeH_2P_2O_5$	${ m FeH_4P_2O_6} \cdot 1/2{ m H_2O}$	$\frac{\rm FeH_{10}P_4O_{12}}{\rm 4H_2O}\cdot$	Zuordnung
$455\mathrm{sh}$	$475\mathrm{s}$	$430\mathrm{m}$	430 w	
490 s	$530\mathrm{sh}$	$470\mathrm{m}$	470 s	
$560\mathrm{sh}$	$565\mathrm{s}$	$495\mathrm{sh}$	500 m }	8 OPO -
590 s		$560\mathrm{vs}$	565 s	
_		$580\mathrm{sh}$	$_{650{ m m}}$ J	$+ \rho H_2 O$
		$665\mathrm{m}$		• -
_	$670\mathrm{m}$			v _s POP
<u></u>	930 vs			v _a POP
	<u> </u>	730 w	730 m *	γ̈́HOH
		620 sh	$630\mathrm{sh}$	YPOD
_		$935\mathrm{vs}$		YPOH
060 vs	990 m	995 vs	1010 vs j	NODII
_	1025 s	$1030\mathrm{vs}$	$1045 \mathrm{vs}^{3}$	80PH
770 w	730 m	$735\mathrm{s}$	730 m)	NODD
_	760 m	$755\mathrm{m}$	$770 \mathrm{sh}^{\uparrow}$	oord
000 vs	$1055\mathrm{vs}$	$955\mathrm{vs}$	945 s	
030 sh	1080 vs	$1010 \mathrm{vs}$	1015 s	
080 vs	$1210 \mathrm{vs}$	$1055\mathrm{vs}$	$1080 \mathrm{sh}$	٧PO
$100\mathrm{sh}$	$1260 \mathrm{vs}$	$1075 \mathrm{vs}$	1100 vs	
		$1140 \mathrm{vs}$	$_{1150\rm vs}$ J	
_		1210 s	1220 sh)	NDOIL
		$1240\mathrm{sh}$	1400 w ∫	0FUH
_		$1450\mathrm{w}$	_	
_		$870\mathrm{m}$	870 m)	NDOD
-			$1030 \mathrm{vs}^{3}$	oron
640 m		$1645\mathrm{m}$	$1635\mathrm{m}$	δ HOH
200 sh		1210 sh*	$1220 \mathrm{sh}$	δDOD
435 w	$2475\mathrm{m}$	$2450\mathrm{m}$	(2465 m	
-		$2480\mathrm{m}$	2480 m 🕽	VETI
770 w	1790 m	1775 m	1795 m)	DD
		$1795\mathrm{m}$	1810 m }	vPD
950 m		$2450\mathrm{m}$	2450 sh)	•
400 s		2930 s	3030 s }	νOH
_		$3050\mathrm{sh}$	$3400 \mathrm{sh}$	
200 sh		2090 sh	2080 sh	
500 m		2150 s	2200 s }	νOD
_		2300 sh	$2450\mathrm{sh}$ J	
200 vs		$3200\mathrm{sh}$	3260 s*	$2\delta OH (H_2O)$
_	·		$2280\mathrm{sh}$	$2\delta OD (D_2O)$

Tabelle 2. Infrarotspektren der untersuchten Fe(II)-phosphite undihrer deuterierten Analoga. Wellenzahlen in cm⁻¹

* Nur bei 77 K beobachtet.

 $k_{\rm PO} = 750 \,\rm Nm^{-1}$, $k_{\rm PO_2} = 650 \,\rm Nm^{-1}$ und der Zwischenkernentfernungen $r_{\rm PO} = 149 \,\rm pm$ und $r_{\rm PO_2} = 152 \,\rm pm$. Diese Werte können mit den Parametern des Chrom(II)⁸, Mangan(II)⁻⁴, Cobalt(II)⁻¹¹ und Nickel-(II)⁻¹¹ und weiter auch mit Parametern der Phosphite von Nichtübergangsmetallen^{9, 10, 18} verglichen werden.

$\sigma_{\rm H} ({\rm cm}^{-1})$	(cm^{-1})	$\overline{\sigma H}$	Zuordnung	
		σ_{D}	Ť	
	180 vw			
	$220\mathrm{vw}$	_		
_	$255\mathrm{w}$	_		
$420\mathrm{sh}$	$410\mathrm{vw}$	1.024)		
	$450\mathrm{sh}$	}	δΟΡΟ	
$470\mathrm{m}$	$465\mathrm{vw}$	1,011		
$680 \mathrm{w}$				
$940\mathrm{w}$	$945\mathrm{w}$	0.995		
1075 m	$1065\mathrm{m}$	1.009		
1080 m	_	· · · · · · · · · · · · · · · · · · ·	vРO	
1115 m	1115 s	1.000		
$1140\mathrm{sh}$	1180 vw	0,966		
1000 m	$725\mathrm{w}$	1.379)	NODII	
1025 m	$755\mathrm{w}$	1.358	80PH	
$2460\mathrm{vs}$	$1765\mathrm{m}$	1.394)	DII	
2470 vs	$1785\mathrm{m}$	1.384	٧РН	

Tabelle 3. Raman-Spektrum des $FeH_4P_2O_6 \cdot 1/2 H_2O$ $\sigma_H = die Wellenzahlen von <math>FeH_4P_2O_6 \cdot 1/2 H_2O$ $\sigma_D = die Wellenzahlen von <math>FeD_4P_2O_6 \cdot 1/2 D_2O$

Das Eisen(II)diphosphit enthält die Bindung P-O-P, zu der, nach Analogie mit kondensierten Phosphaten, Schwingungen bei 670 und 930 cm⁻¹ zugeordnet wurden. Auf Grund dieser Zuordnung kann der Valenzwinkel P-O-P analog, wie es in den Studien anderer Verfasser^{12,13} der Fall war, ermittelt werden. Die Berechnung ergab den Wert von 159°, der etwas größer ist als bei den Diphosphaten¹⁴. Der gewonnene Wert kann mit den Valenzwinkeln von Diphosphiten einiger anderer zweiwertiger Metalle²¹ verglichen werden.

In Verbindungen, wo keine P—O—H-Gruppen enthalten sind (FeHPO₃ \cdot 3 H₂O), kommen Wasserstoffbindungen zwischen den Wassermolekülen und Phosphitanionen und zwischen den Wassermolekülen gegenseitig zur Geltung. Zur Berechnung der Energie dieser Wasserstoffbindungen wurde das Modell der doppelten Exzitation des Wassermoleküls nach Juchněvič und Karjakin^{15, 16} und die Wellenzahlwerte der Absorptionsbanden vOH aus der Tab. 2 verwendet. Die Energie der Wasserstoffbindungen H₂O—H₂O beträgt 23kJ mol⁻¹ und die Energie der Wasserstoffbindung bei der Wechselwirkung H₂O----HPO₃²⁻ beträgt 45 kJ mol⁻¹. Die Energie der Wasserstoffbindung bei der gegenseitigen Wechselwirkung der Wassermoleküle in dem Kristallhydrat kann mit der Energie der Wasserstoffbindung in flüssigem Wasser verglichen werden. Die Energie der Wasserstoffbindungen H₂O-----HPO₃²⁻ beweist die sogenannte positive Hydratation des Phosphitanions ebenso wie bei anderen Phosphiten der Übergangs-^{3, 8, 17} und Nichtübergangsmetalle¹⁸.

Bei den sauren Phosphiten kommen noch die Wasserstoffbindungen zur Geltung, die auf Grund der Wechselwirkung des Sauerstoffatoms und der OH-Gruppe (an zwei verschiedenen Phosphoratomen) gebildet werden. Zur Diskussion der Längen der angegebenen Wasserstoffbindungen (R) wurden folgende Korrelationsabhängigkeiten^{19, 20} verwendet:

(1) $R = f(\sigma_{vOH})$ (2) $R = f(\sigma_{vOH}/\sigma_{vOD})$

(3) $R = f(\sigma_{\gamma OH})$

(4) $R = f(\sigma_{\text{\delta OH}})$; σ ist die Wellenzahl des Absorptionsbandes.

Die gewonnenen Ergebnisse sind in der Tab. 4 zusammengefaßt. Schwächere Wasserstoffbindungen (R = 275—284 pm) entsprechen augenscheinlich den Wechselwirkungen zwischen Wassermolekülen und Anionen, beziehungsweise zwischen den Wassermolekülen gegenseitig. Die stärkeren Wasserstoffbindungen (R = 258—270 pm) gehören zu der gegenseitigen Wechselwirkung von Anionen, die zur Bildung komplizierter, sogenannter Polyorthophosphit-anionen^{2-5, 8, 10, 18} führen.

	$rac{1}{R}(\mathrm{pm})$	$2 R ({ m pm})$	${3 \over R({ m pm})}$	${4 \over R({ m pm})}$
$\mathrm{FeH_4P_2O_6}\cdot1/2\mathrm{H_2O}$	a	280	282	278
	266		270 ^b	275
	263	265		267
	258	258	259	
${\rm FeH_{10}P_4O_{12} \cdot 4H_2O}$	284	280	286 ^c	277
	265		267 ^b	269
	258	258	<u></u>	—

Tabelle4. Die Längen der Wasserstoffverbindungen in den untersuchtenPhosphiten [nach verschiedenen Korrelationsabhängigkeiten (1-4) bestimmt]

^a Möglichkeit der Koinzidenz der Absorptionsbänder vOH und 28OH.

^b Nach Deuterat bestimmt.

° Nur bei 77K bestimmt.

Schlußfolgerungen

Als strukturelle Hauptcharakteristik der Eisen(II)-phosphite dient die annähernd oktaedrische Koordinationssphäre aus den Sauerstoffatomen von Anionen, resp. auch Wassermolekülen ($f_L < 1$). Im Phosphit FeHPO₃·3H₂O entstehen schwache Wasserstoffbindungen durch die Wechselwirkung der Wassermoleküle (entweder gegenseitig, oder mit dem Anion HPO₃²⁻). Die Bildung einer mittelstarken oder starken Wasserstoffbindung in Polyorthophosphiten äußert sich nicht nur in Änderungen der Schwingungswellenzahlen der OH-Gruppen, sondern auch in regelmäßigen, obwohl weniger ausgeprägten Änderungen der übrigen Schwingungswellenzahlen und anderer physikalisch-chemischer Eigenschaften (Herabsetzung der Dq-Werte, der Mössbauerschen isomeren Verschiebungen und der Quadrupolaufspaltungen², g-Faktoren² usw.). Diese Erscheinungen sind bei den Phosphiten augenscheinlich allgemein (z. B. Lit.^{2-6, 8, 10, 11, 18}) und ihr Vorkommen kann als Folge der elektronischen Änderungen an dem Sauerstoffatom des Anions bei der Protonierung und bei der Bildung der Wasserstoffbindung² angesehen werden. Die Chemie der Eisen(II)phosphite ist in vieler Hinsicht der Chemie der Eisen(III)-³ und Mangan(II)-phosphiten⁴ analog, weil die Tendenz zur Bildung einer koordinationskovalenten Bindung bei diesen Verbindungen nicht so stark ist, wie z. B. bei der komplexen Tris(phosphit)-chrom(III)säure²²; aus diesem Grunde stellt neben der koordinationskovalenten Bindung auch die Wasserstoffbindung in den Polyorthophosphiten ein bedeutendes Strukturelement dar.

Experimenteller Teil

Die phosphorige Säure H_3PO_3 und D_3PO_3 wurde durch die Reaktion des Phosphortrichlorids mit H_2O und D_2O hergestellt. Das Eisen(II)phosphit wurde in inerter N_2 -Atmosphäre durch Fällung der heißen wäßrigen Lösungen von $(NH_4)_2HPO_3$ und FeSO₄ in stöchiometrischem Verhältnis gewonnen. Die sauren Eisen(II)phosphite wurden in N_2 -Atmosphäre durch die Reaktion von H_3PO_3 mit FeHPO₃ · 3 H_2O (wie in Arbeit¹) hergestellt.

Die chemische Analyse der Ausgangsstoffe und der gewonnenen Verbindungen wurde nach Oxidation mit 65 %iger Salpetersäure gravimetrisch durchgeführt. Phosphor wurde als $Mg_2P_2O_7$ unter Maskierung von Fe³⁺ mit Zitronensäure²³ und das Eisen elektrogravimetrisch²⁴ bestimmt. Titrimetrisch wurde Phosphit und zweiwertiges Eisen unter Anwendung der Cerimetrie ermittelt²⁵⁻²⁷.

Die Pulverröntgenogramme wurden mit Hilfe der Methode nach *Debye-Scherrer* unter Anwendung des Apparates Mikrometa II Firma Chirana mit der Strahlung Co $K\alpha$ gewonnen.

Zum Studium der thermischen Zersetzung in N_2 -Atmosphäre bei gleichmäßig anwachsender Temperatur im Bereiche von 298–873 K wurde das Derivatograph (MOM, Budapest) verwendet. Das Temperaturprogramm betrug 5 K/min. Als Vergleichsstoff diente Al₂O₃. 600 M. Ebert und L. Kavan: Untersuchung von Eisen(II)phosphiten

Die magnetischen Messungen wurden nach der Faraday-Methode in der Modifikation nach Terry²⁸ durchgeführt. Die magnetische Suszeptibilitäten sind Durchschnitt von je 3 Werten, die bei drei verschiedenen Intensitäten des magnetischen Feldes gemessen wurden. Die Messung der Temperaturabhängigkeit der magnetischen Suszeptibilität wurde nach der Gouy-Methode an dem von Julák²⁹ konstruierten Apparate durchgeführt.

Die Elektronen-Reflexspektren wurden mit dem Apparat VSU-2 (Zeiss) gemessen. Die Spektren im Bereiche von 0,8––1 μm^{-1} wurden mit ${\rm CoSO_4}\cdot 7~{\rm H_2O}$ überprüft.

Die Infrarot-Molekülspektren wurden mit dem Apparat UR-20 entweder als KBr-Tablette oder Nujol- bzw. Tripen-Suspension im Bereiche von $400-4000 \text{ cm}^{-1}$ gewonnen; Temperatur 77 und 298 K.

Die Raman-Spektren wurden am Apparat Jeol JRS S1 mit der Argon-Laser-Exzitation ($\lambda = 488$ bzw. 514,5 nm), Leistung 60—70 mW, gemessen. Die Manipulationen mit den Proben beim Studium der Spektral- und magnetischen Eigenschaften wurden in einem Handschuhkasten in N₂-Atmosphäre durchgeführt.

Literatur

- ¹ M. Ebert und L. Kavan, Z. Chem. 18, 78 (1978).
- ² M. Ebert und L. Kavan, Radiochem. Radioanal. Lett. 23, 77 (1978).
- ³ M. Ebert und L. Kavan, Mh. Chem. 106, 1499 (1975).
- ⁴ M. Ebert und J. Eysseltová, Mh. Chem. 105, 1030 (1974).
- ⁵ *M. Ebert*, Chemiker Ztg. **44**, 839 (1970).
- ⁶ M. Ebert und J. Eysseltová, Coll. Czech. Chem. Commun. 35, 545 (1970).
- ⁷ B. N. Figgis, Introduction to Ligand Fields. London: Wiley. 1969.
- ⁸ L. Kavan und M. Ebert, Coll. Czech. Chem. Commun., im Druck.
- ⁹ M. Ebert und J. Eysseltová, Mh. Chem. 103, 188 (1972).
- ¹⁰ M. Ebert und M. Pelikánová, Mh. Chem. 105, 11 (1974).
- ¹¹ M. Ebert und J. Eysseltová, Mh. Chem. 100, 553 (1969).
- ¹² R. J. Gillespie und E. A. Robinson, Canad. J. Chem. 41, 2074 (1963).
- ¹³ P. Klíma, A. Muck und F. Petrů, Z. Chem. 9, 350 (1969).
- ¹⁴ P. Klima, A. Muck und F. Petrů, Z. Chem. 11, 29 (1971).
- ¹⁵ G. V. Juchněvič und A. V. Karjakin, Dokl. Akad. Nauk SSR 156, 681 (1964).
- ¹⁶ A. V. Karjakin und G. A. Krivencova, Sostojanije vody v organičeskich i neorganičeskich sojediněnijach. Moskva: Nauka. 1973.
- ¹⁷ M. Ebert und L. Kavan, Chem. Zvesti **30**, 425 (1976).
- ¹⁸ I. Lukeš, Dissertation, Karls-Universität Praha, 1975.
- ¹⁹ A. Novak, Structure and Bonding 18, 177 (1974).
- ²⁰ J. Pirenne, Physica **21**, 971 (1955).
- ²¹ M. Ebert und L. Kavan, Coll. Czech. Chem. Commun. 43, 3317 (1978).
- ²² J. Podlaha und M. Ebert, J. Neorg. Khim. (russ.) 7, 2185 (1962).
- ²³ W. F. Hillebrand, G. E. F. Lundell, H. A. Bright und J. I. Hoffman, Vybrané metody anorganické analýzy. Praha: SNTL. 1958.
- ²⁴ A. Jílek und J. Koťa, Vážková analysa a elektroanalysa II. Praha: TVV. 1951.
- ²⁵ K. B. Rao und G. G. Rao, Z. Analyt. Chem. **147**, 274 (1955).
- ²⁶ G. G. Guilbaut und W. H. McCurdy, Anal. Chim. Acta 24, 214 (1961).
- ²⁷ M. Ebert und L. Kavan, Hutnické listy **32**, 583 (1977).
- ²⁸ F. Vilím, Čechoslov. Čas. Fys. 5, 416 (1955).
- ²⁹ J. Julák, Dissertation, Karls-Universität Praha, 1972.